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Invited talks

Héctor Bombı́n (Perimeter Institute)
Structure of 2D Topological Stabilizer Codes

Abstract: By characterizing codes in terms of “lattice groups” on infinite lattices, we show that they can
all be understood in terms of topological charges and string operators. This is true either for subspace
or subsystem codes, and it has direct applications for error correction, for example. Subspace codes are
directly connected to topologically ordered condensed matter systems. We show that all 2D topological
stabilizer codes are equivalent up to local transformations to several copies of one universal phase: Kitaev’s
topological code.

Hans Briegel (Innsbruck)
Projected simulation for artificial intelligence

Abstract: We introduce a notion of a learning agent whose interaction with the environment is governed by
a simulation-based projection, which allows the agent to project itself into future situations before it takes
real action. Projective simulation is based on a random walk through a network of clips, which are elemen-
tary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual
input and due to certain compositional principles of the simulation process. During simulation, the clips
are screened for specific features which trigger factual action of the agent. The scheme is different from
other, computational, notions of simulation, and it provides a new element in an embodied cognitive science
approach to intelligent action and learning. While the scheme works entirely classically, it also provides a
natural route for generalization to quantum-mechanical operation.

Joint work with Gemma De las Cuevas.

Nicolas Gisin (Geneva)
Futures of Quantum Communication: Device-Independent QKD, Quantum Networks and bi-locality

Abstract: There are two main Grand Challenges for academic research in quantum communication. The
first one concerns “device independent QKD”, that is an implementation of Quantum Key Distribution that
exploits the nonlocal correlation observed in violations of Bell’s inequality to realize “self testing QKD
apparatuses”. The second one aims at futuristic continental scale quantum networks. The latter requires,
among others, multimode quantum memories with close to a second memory times, a fascinating challenge.
Interestingly, quantum networks also lead us to a refreshing revisit of nonlocality.

Joint work with Hugo Zbinden, Mikael Afzelius, and Rob Thew.
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Mio Murao (Tokyo)
“Globalness” of unitary operations on quantum information

Abstract: One of the essential differences between quantum information processing (QIP) and the classical
counterpart is that QIP sometimes involves global operations on unknown input states, namely, arbitrary su-
perpositions of quantum states where their superposition coefficients are unknown. Quantum teleportation
and quantum error corrections are typical examples. We call such unknown states. Quantum information
cannot be measured (i.e., estimating the unknown coefficients by finite measurements) perfectly and can-
not be copied perfectly either. In contrast, classical information in QIP can be encoded in a set of known
orthogonal states and can be perfectly measured. Classical information can be also obtained by the result
of measurements in QIP. QIP can be analyzed by investigating how input quantum information is trans-
formed to output quantum information due to global operations. Therefore, evaluation of the “globalness”
of global operations on quantum information is desirable. In this talk, I present our recent results from in-
vestigating the globalness of unitary operations on quantum information in terms of delocalizing power [1],
entanglement cost [2], and implementation over a butterfly network [3].

[1] A. Soeda, M. Murao, New J. Phys. 12, 093013 (2010).
[2] A. Soeda, T.S. Turner, M. Murao, arXiv:1008.1128.
[3] A. Soeda, Y. Kinjo, T.S. Turner and M. Murao, arXiv:1010.4350.

Tobias Osborne (Hannover)
The continuum limit of a quantum circuit: variational classes for quantum fields

Abstract: in recent years we’ve seen many developments in the study of strongly correlated quantum systems
spurred by insights from the study of entanglement in quantum information theory. In particular, new
variational classes manifestly exploiting the entropy/area law have been applied to successfully study a wide
range of settings from real-time evolution to finite fermion densities. These developments have been mostly
centered in the lattice setting. In this talk I’ll describe recent work in generalizing the two most successful
variational classes developed, matrix product states and the multiscale entanglement renormalization ansatz,
to the quantum field setting by exploiting a continuum limit of their quantum circuit descriptions.

Umesh Vazirani (Berkeley)
TBD
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Telescopic Relative Entropy

Koenraad M.R. Audenaert

Department of Mathematics,
Royal Holloway, University of London,
Egham TW20 0EX, United Kingdom

The quantum relative entropy between two quantum states ρ and σ,
S(ρ||σ) = Tr ρ(log ρ − log σ), is a non-commutative generalisation of the
Kullback-Leibler distance between probability distributions. Because of
its strong mathematical connections with von Neumann entropy, and its
interpretation as an optimal asymptotic error rate in quantum hypothesis
testing (in the context of Stein’s lemma) relative entropy is widely used
as a (non-symmetric) distance measure between states.

One of its drawbacks, however, is that for non-faithful (rank-deficient)
states the relative entropy can be infinite. In particular, relative entropy
is useless as a distance measure between pure states, since it is infinite for
pure ρ and σ, unless ρ and σ are exactly equal (in which case it always
gives 0).

There are various possibilities to overcome this deficiency. One is to
apply a smoothing process. One can define the smooth relative entropy
between states ρ and σ as the infimum of the ordinary relative entropy
between ρ and another state τ , where τ is constrained to be ϵ-close to σ
in trace norm distance:

Sϵ(ρ||σ) = inf
τ
{S(ρ||τ) : τ ≥ 0,Tr τ ≤ 1, ||τ − σ||1 ≤ ϵ} .

This form of smoothing has already been applied to Renyi entropies and
max-relative entropy, giving rise to a quantity with an operational in-
terpretation, but it could equally well be applied to ordinary relative
entropy.

In the case of the ordinary relative entropy there is a simple canonical
choice for τ that achieves the same purpose of regularisation but without
having to find the exact minimiser. Namely, we can take that τ that is
collinear with ρ and σ; i.e. τ = aρ+ (1− a)σ.

It is easy to show that S(ρ||τ) is bounded above by − log a, which is
finite for 0 < a < 1. It therefore makes perfect sense to normalise S(ρ||τ)
by dividing it by − log a, producing a quantity that is always between 0
and 1.

These observations led us to define what we call the telescopic relative
entropy (TRE). For fixed a ∈ (0, 1), the a-telescopic relative entropy
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between states ρ and σ is given by

Sa(ρ||σ) :=
1

− log(a)
S(ρ||aρ+ (1− a)σ). (1)

Furthermore, we define

S0(ρ||σ) := lim
a→0

Sa(ρ||σ) (2)

S1(ρ||σ) := lim
a→1

Sa(ρ||σ), (3)

and show that these limits exist and provide explicit formulas.
It is the purpose of this paper to initiate the study of this quantity. The

telescoping operation σ 7→ aρ+(1−a)σ has a number of far-reaching and
sometimes unexpected consequences. Because of its linearity, the TRE
inherits most of the desirable properties of the ordinary relative entropy.
However, a host of additional relations in the form of sharp inequalities
may be derived that in the case of the ordinary relative entropy simply
make no sense, because the constants appearing in the inequality would
be infinite.

When ρ and σ are pure, there is an explicit one-to-one relation between
Sa(ρ||σ) and the trace norm distance T (ρ, σ) for any value of a ∈ [0, 1].
Although the relation is somewhat complicated, in practice it shows that
Sa(ρ||σ) is only slightly bigger than T (ρ, σ)2.

We also provide bounds on the TRE in terms of the trace norm dis-
tance. While there is no upper bound on the ordinary relative entropy in
terms of the trace norm distance, we can find a sharp upper bound on
the TRE: for any a ∈ (0, 1),

Sa(ρ||σ) ≤ T (ρ, σ). (4)

An unsuspected corollary is a strengthening of a very well-known in-
equality. For any two states ρ, σ and (p, 1− p) a probability distribution,

S(pρ+ (1− p)σ)− (pS(ρ) + (1− p)S(σ)) ≤ h(p) T (ρ, σ). (5)

Further properties of the TRE will be explored in forthcoming papers.
This includes an interesting connection with Hamiltonian reconstruction.
There is some evidence that the difference Sa(ρ||σ1) − Sa(ρ||σ2) might
provide non-trivial lower bounds on the time needed for state σ1 to evolve
unitarily into state σ2 under the influence of a Hamiltonian with bounded
energy.
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Large violation of Bell inequalities using both
particle and wave measurements

Daniel Cavalcanti1, Nicolas Brunner2, Paul Skrypczyk2, Alejo Salles3,
and Valerio Scarani1

1 Centre for Quantum Technologies, National University of Singapore, 3 Science
drive 2, Singapore 117543

2 H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8
1TL, United Kingdom

3 Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark

When separated measurements on entangled quantum systems are
performed, the theory predicts correlations that cannot be explained by
any classical mechanism: communication is excluded because the signal
should travel faster than light; pre-established agreement is excluded be-
cause Bell inequalities are violated. All optical demonstrations of such
violations [1] have involved discrete degrees of freedom and are plagued
by the detection-efficiency loophole. A promising alternative is to use
continuous variables combined with highly efficient homodyne measure-
ments. However, all schemes proposed so far use states or measurements
that are extremely difficult to achieve [2], or produce very weak violations
[3, 4]. Here we present a simple method for generating large violations for
feasible states using both photon counting and homodyne detections. Our
scheme may lead to the first violation of Bell inequalities using continuous-
variable measurements and pave the way for a loophole-free Bell test.

We study schemes in which both Alice and Bob alternate between
counting and homodyne measurements [5] (see Fig. 1), then locally post-
process their data to extract bits and check the Clauser-Horne-Shimony-
Holt (CHSH) inequality. A significant violation S ≈ 2.25 (while S ≤ 2 for
any local model) can be achieved by the state

|Ψ2〉 =
|2〉A|0〉B + |0〉A|2〉B√

2
. (1)

where |0〉 and |2〉 refer to states of well defined photon-number. This
state can be created by having two heralded single photons from down-
conversion sources bunch on a beam-splitter, in a Hong-Ou-Mandel setup.

The experimental implementation of our scheme seems feasible with
present day technology, though probably challenging. However homo-
dyne measurements on one and two-photon states coming from down-
conversion have been reported [6]. Our scheme opens new possibilities
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for a loophole-free Bell test. We study the influence of experimental im-
perfections, in particular focusing on the limited efficiency of the photon
counting measurement and the transmission between the source and the
detectors. We find that our scheme is resistant to imperfections. The
requirements in terms of detection efficiency and transmission are com-
parable to the most favorable feasible schemes known to date for discrete
variables.

Finally, the combination of counting and homodyne measurements can
be applied to many more scenarios. Notably, the two-mode squeezed state
violates CHSH for some values of the squeezing parameter λ. Although
the violation found is small (S ≈ 2.05 for λ = 0.83), it is remarkable,
since this state is Gaussian and easily produceable in the lab.

Fig. 1. A source sends a photonic entangled state to two space-like separated locations.
In these locations each subsystem is subjected to one of two measurements: number
of photons (photon counting) or quadrature (homodyning) measurements. In this way
both wave and particle characteristics of the systems are tested.

References

1. A. Aspect, “To be or not to be local”, Nature 446, 866 (2007).
2. K. Banaszek, K. Wódkiewicz, Nonlocality of the Einstein-Podolski-Rosen state

in the Wigner representation, Phys. Rev. A 58, 4345 (1998)
3. R. Garćıa-Patrón Sánchez, J. Fiurášek, N.J. Cerf, J. Wenger, R. Tualle-Brouri, P.

Grangier, Proposal for a loophole-free Bell test using homodyne detection, Phys.
Rev. Lett. 93, 130409 (2004)

4. H. Nha, H.J. Carmichael, Proposed test of quantum nonlocality for continuous
variables, Phys. Rev. Lett. 93, 020401 (2004)

5. D. Cavalcanti, N. Brunner, P. Skrzypczyk, A. Salles, V. Scarani, “Large viola-
tion of Bell inequalities using both particle and wave measurements”, preprint
arXiv:1012.1916.

6. S.A. Bimbard, N. Jain, A. MacRae, and A.I. Lvovski, Quantum-optical state
engineering up to the two-photon level. Nat. Photon. 4, 243 (2010).
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Local unitary group stabilizers and
entanglement for multiqubit symmetric states

Curt D. Cenci1, David W. Lyons1, and Scott N. Walck2

1 Mathematical Sciences, Lebanon Valley College, Pennsylvania USA
2 Physics, Lebanon Valley College, Pennsylvania USA

Abstract. We refine recent local unitary entanglement classification for
symmetric pure states of n qubits (that is, states invariant under permu-
tations of qubits) using local unitary stabilizer subgroups and Majorana
configurations.

1 Overview

The question of when a given multiparty state can be converted to an-
other by local operations and measurements of subsystems is crucial in
quantum information science [1]. The fact that entangled states play a
role as resources in computation and communication protocols motivates
problems of measurement and classification of entanglement. In general,
these are difficult problems, already rich for the case of pure states of
n-qubits, where the number of real parameters necessary for classifying
entanglement types grows exponentially in n.

A promising special case for the general problem of entanglement mea-
surement and classification is that of the symmetric states, that is, states
of composite systems that are invariant under permutation of the subsys-
tems. Symmetric states admit simplified analyses, and they are of interest
in their own right. Examples of recent work in which permutation invari-
ance has made possible results where the general case remains intractable
include: geometric measure of entanglement [2–4], efficient tomography
[5], classification of states equivalent under stochastic local operations
and classical communication (SLOCC) [6, 7], and our own work on clas-
sification of states equivalent under local unitary (LU) transformations
[8].

The main result of this paper is a classification of LU equivalence
classes of n-qubit symmetric states that refines our own previous work [8],
which is based on the following idea. Suppose states ρ, ρ′ are local unitary
equivalent via some LU transformation U , that is, we have ρ′ = UρU †.
If a local unitary operator V stabilizes ρ, then UV U † stabilizes ρ′. The
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consequence is that stabilizer subgroups of locally equivalent states are
isomorphic via conjugation. Thus the isomorphism class of the stabilizer
is an LU invariant. This inspires a two-stage classification program.

1. Classify LU stabilizer subgroup conjugacy classes.
2. Classify LU classes of states for each of the stabilizer classes from

stage 1.

Analysis of both stages 1 and 2 is aided by the following geometric
observations regarding symmetric states. A Bloch sphere rotation of the
Majorana configuration of points representing a symmetric state |ψ〉 re-
sults in an LU equivalent state |ψ′〉 = V ⊗n |ψ〉, where V is the 2×2 unitary
operator corresponding to the given rotation of the sphere. Not obvious,
but true nonetheless, is that given any LU operation U = U1⊗U2⊗· · ·⊗Un

that transforms a symmetric state |ψ〉 to another symmetric state |ψ′〉,
there is a 1-qubit operation V such that |ψ′〉 = V ⊗n |ψ〉. This was proved
by Mathonet et al. [9] for SLOCC operations on pure symmetric states.
We show that this holds more generally for LU operations on mixed sym-
metric states.

We show there are six classes of infinite LU stabilizer groups and
classify their corresponding LU-inequivalent states. Discrete LU stabilizer
subgroups are isomorphic to finite subgroups of SO(3). These are the
cyclic groups, the dihedral groups, and the symmetry groups of the five
Platonic solids.
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The locking-decoding frontier for generic
dynamics

Frédéric Dupuis1, Jan Florjanczyk2, Patrick Hayden2,4, Debbie Leung3,4

1 Institute for Theoretical Physics, ETH Zurich, Switzerland
2 School of Computer Science, McGill University, Canada

3 Institute for Quantum Computing, University of Waterloo, Canada
4 Perimeter Institute for Theoretical Physics, Waterloo, Canada

One of the most basic and intuitive properties of most information
measures is that the amount of information carried by a physical system
must be bounded by its size. For example, if one receives ten physical bits,
then one’s information, regardless of what that information is “about”,
should not increase by more than ten bits. While this is true for most
information measures, in quantum mechanics there exist natural ways of
measuring information that violate this principle by a wide margin. In
particular, this violation occurs when one defines the information con-
tained in a quantum system as the amount of classical information that
can be extracted by the best possible measurement. To construct ex-
amples of this effect, we take a classical message and encode it into a
two-part quantum message: a cyphertext, which is roughly as large as the
message, and a much smaller key. Given both the cyphertext and the key,
the message can be perfectly retrieved. We can then look at the amount
of information that can be extracted about the message the message by
a measurement given only access to the cyphertext. Locking occurs if
this amount of information is less than the amount of information in the
message minus the size of the key.

Our results are stronger than previous results in the sense that instead
of using the accessible information, we define locking in terms of the trace
distance between measurement results on the real state and measurement
results on a state completely uncorrelated with the message . Unlike the
accessible information, this has a very natural operational interpretation:
it bounds the largest probability with which we can guess, given a message
m and the result x of a measurement done on a cyphertext, whether x
comes from a valid cyphertext for m or from a cyphertext generated
independently from m.

Despite this stronger definition, we are also be able to show that the
locking phenomenon is generic. Instead of having a classical key revealing
the basis in which the information is encoded, we consider the case where
there is a single unitary, and the key is simply a small part of the quantum
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system after the unitary is applied. In particular, we are be able to
show that locking occurs with high probability in physical systems whose
internal dynamics are sufficiently random to be adequately modelled by
a Haar-distributed unitary. This can therefore give interesting results in
the context of thermodynamics, or of the black hole information problem.

We also allow the measuring device to share entanglement with the
cyphertext-key compound system. While this may not correspond to a
very meaningful cryptographic scenario, it allows us to study the behavior
of entanglement in physical systems, and to know to what extent the
presence of entanglement can allow us to beat this locking effect.

Finally, unlike previous work, we do not limit the message (or the
entanglement) to be uniform; the size of the key instead depends on the
min-entropy of the message. This assumption is easier to justify in cryp-
tographic applications. Indeed, while the locking results we present here
can be interpreted as demonstrating the possibility of encrypting classical
messages in quantum systems using only very small keys, care must be
taking when composing such encryption with other protocols. We use our
results to exhibit a quantum key distribution protocol, for example, that
appears to be secure if the eavesdropper’s information about the secret
key is measured using the accessible information, but in which leakage of
a logarithmic amount of key causes the entire key to be compromised.

The proof follows the basic strategy of many concentration of mea-
sure arguments. We allow the decoding party access to POVMs, but since
we cannot directly discretize the space of all POVMs, we rely on a more
involved argument based on the operator Chernoff bound to reduce the
problem to a discretizable set. The basic idea is to start from the fact
that, given a fixed measurement superoperator, the probability over the
choice of unitaries that this measurement yields non-negligible correla-
tions is extremely small. Then, we would like to discretize the space of
all measurement superoperators and use the union bound to show that
the probability that any measurement superoperator yields non-negligible
correlations is still very small. For this to work, the “number” of mea-
surements has to be much smaller than the reciprocal of the probability
of choosing a non-locking unitary. However, the set of measurement su-
peroperators cannot be discretized directly, since (among other things)
the measurements contain a potentially unbounded number of outputs.
Hence, we bootstrap the above argument on new quasi-measurement ob-
jects which yield similar stastics to POVMs.
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Unconditionally-secure and reusable public-key
authentication

(Extended Abstract)

Lawrence M. Ioannou1,2 and Michele Mosca1,2,3

1 Institute for Quantum Computing, University of Waterloo,
200 University Avenue, Waterloo, Ontario, N2L 3G1, Canada

2 Department of Combinatorics and Optimization, University of Waterloo,
200 University Avenue, Waterloo, Ontario, N2L 3G1, Canada

3 Perimeter Institute for Theoretical Physics
31 Caroline Street North, Waterloo, Ontario, N2L 2Y5, Canada

Public-key cryptography has proved to be an indispensable tool in the
modern information security infrastructure. Most notably, digital signa-
ture schemes form the backbone of Internet commerce, allowing trust to
be propagated across the network in an efficient fashion. In turn, public-
key encryption allows the private communication of messages (or, more
usually, the establishment of symmetric secret keys) among users who
are authenticated via digital signatures. The security of these classical
public-key cryptosystems relies on assumptions on the difficulty of certain
mathematical problems [1]. Gottesman and Chuang [2] initiated the study
of quantum-public-key cryptography, where the public keys are quantum
systems, with the goal of obtaining the functionality and efficiency of
public-key cryptosystems but with information-theoretic security. They
presented a secure one-time digital signature scheme for signing classical
messages, based on Lamport’s classical scheme [3].

Given the importance of the public-key paradigm in classical cryp-
tography, it is perhaps surprising that its quantum incarnation is not as
richly a developed field. One possible explanation for the relative lack
of papers on the subject is the no-go theorem in Ref. [4], which forbids
the digital signing of arbitrary pure states. However, it should be noted
that the theorem itself is quite specific in scope, and there remains a
range of interesting open problems: no theorem is currently known to
rule out quantum-public-key schemes for encryption of classical or quan-
tum states, authentication (signing) of classical messages or all subsets of
quantum states, or authentication of entities. Our paper concerns entity
authentication—often called identification.

Authentication schemes are not concerned with ensuring the privacy
of information, but rather seek to ensure its integrity. For example, digi-
tal signature schemes ensure the integrity of origin of messages, whereas
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identification schemes ensure the integrity of origin of communication in
real time [1]. Identification protocols are said to ensure “aliveness”—that
the entity proving its identity is active at the time the protocol is exe-
cuted. In practice, they are used in smart-card readers in bank machines
and next to controlled-access doorways.

We prove that an identification scheme based on the one in Ref.
[5] is secure against a computationally-unbounded adversary (only re-
stricted by finite cheating strategies), demonstrating for the first time that
unconditionally-secure and reusable public-key authentication is possible
in principle. We regard our result more as a proof of concept than a (po-
tentially) practical scheme. Still, we are confident that an extension of
the techniques used here may lead to more efficient protocols.

To prove security of our protocol, we employ some elements of the
polynomial method (as in Ref. [6]), the theory of estimation of black-box
group transformations [7], and the theory of bounded quantum reference
frames [8]. We also use the quantum Fourier transform in a new and rather
surprising way. Thus, we hope our techniques open the door not only
to the discovery of more robust or more efficient identification schemes,
but also to the advancement of the above areas of quantum information
theory.
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Approximating the Turaev-Viro Invariant of
Mapping Tori is Complete for One Clean Qubit

Stephen P. Jordan1 and Gorjan Alagic2

1 Institute for Quantum Information, Caltech. sjordan@caltech.edu
2 Institute for Quantum Computing, University of Waterloo. galagic@iqc.ca

In 1998, Knill and Laflamme proposed that exponential speedups over
classical computers could still be possible even if one can only initialize
a single qubit into a pure state, with the rest of the qubits in the maxi-
mally mixed state [4]. The complexity class thus defined is called DQC1.
Estimating the trace of a unitary operator is a DQC1-complete problem,
while estimating a single matrix entry is a BQP-complete problem; no
efficient classical algorithms are known in either case.

Finding other natural BQP-complete and DQC1-complete problems
is essential to our understanding of the computational power afforded by
quantum computers. Groundbreaking work by Freedman, Kitaev, Larsen
and Wang [3] in the 1990s, along with later work [1] showed that approx-
imating the Jones polynomial, a famous invariant of links, is in fact a
BQP-complete problem3. In these works, the input is an element of the
braid group, and the output is an estimate of the Jones polynomial of
the so-called plat closure of the input braid. In 2008, Shor and Jordan [5]
showed that estimating the Jones polynomial of the so-called trace closure
of the input braid is a complete problem for DQC1.

Our work shows that the above results are an example of a more
general relationship between estimation of topological invariants on one
hand, and quantum computational complexity classes on the other. Re-
cently, Alagic, Jordan, König and Reichardt [2] showed that approximat-
ing certain invariants of 3-manifolds is a BQP-complete problem. In this
formulation, the input is a so-called Heegaard splitting of a 3-manifold,
specified as an element of the mapping class group; the output is an es-
timate of the Turaev-Viro invariant of the input manifold. In this work,
we complete the picture formed by the above results by showing that
approximating the Turaev-Viro invariant of a 3-manifold specified as a
mapping torus is a complete problem for DQC1. We also use the lan-
guage of Topological Quantum Field Theories (or TQFTs) to outline the
mathematical underpinnings of the relationship between approximating

3 Technically, we are always dealing with the decision versions of these problems.
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the Jones polynomial of the plat and trace closures, and approximating
the Turaev-Viro invariant of Heegaard splittings and mapping tori.

〈ψ| |ψ〉U Tr[U ]

Fig. 1. Left, bottom to top: the BQP-complete problems of estimating (i.) the Jones
polynomial of the plat closure of a braid, (ii.) the matrix entry of a unitary operator
U , and (iii.) the Turaev-Viro invariant of a Heegaard splitting. Right, bottom to
top: the DQC1-complete problems of estimating (i.) the Jones polynomial of the trace
closure of a braid, (ii.) the trace of a unitary operator U , and (iii.) the Turaev-Viro
invariant of a mapping torus. These situations are fundamentally analogous. Note: the
3-manifolds are drawn only as illustrations, not two-dimensional projections of the 3-
manifolds themselves; in particular, after gluing (along the handlebody boundaries, as
shown) the 3-manifolds do not in reality have a boundary at all.
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Quantum key distribution (QKD) is a cryptographic primitive allow-
ing two distant parties, Alice and Bob, to establish a secret key in an
untrusted environment controlled by some eavesdropper, Eve [1]. One of
the great interests of QKD is that it can be implemented with present
day technology, at least for reasonable distances.

Whereas discrete-variable protocols are quite resistant to losses, conti-
nuous-variable (CV) protocols do not seem to display the same quality:
the present experimental record is around 25 km [2, 3]. The main limita-
tion in terms of range for CV QKD stems from the finite reconciliation
efficiency, especially for a Gaussian modulation in the low signal-to-noise
ratio (SNR) regime.

Here, we introduce a new continuous-variable QKD protocol using a
continuous but non-Gaussian modulation, allowing for an efficient recon-
ciliation scheme and thus for improved performances. More precisely, the
modulation we consider crucially uses algebraic properties of the octo-
nions, which can be seen as points on the unit sphere in R8.

In this protocol, Alice sends 4N coherent states to Bob such that
the coordinates of all quadruples {|α4k〉, |α4k+1〉, |α4k+2〉, |α4k+3〉} for k ∈
{1, · · · , N} are drawn with the uniform probability on the seven-dimensio-
nal sphere of radius 2α in phase space:

S7 ≡ {(α4k, α4k+1, α4k+2, α4k+3) ∈ C4 such that

|α4k|2 + |α4k+1|2 + |α4k+2|2 + |α4k+3|2 = 4α2}, (1)

where Alice’s modulation variance is 2α2 (in shot noise units). Bob then
proceeds with an heterodyne measurement (as in Ref. [4] for instance).
Here, it is crucial that both quadratures are measured in order to use
the property of Eq. 1. The rest of the protocol consists of an estimation
step, a reconciliation step (which combines techniques introduced in [5]
and [6]) and finally a privacy amplification procedure.
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We establish the security of this protocol against collective attacks,
provided that the quantum channel is linear. This can be done by using
extremality properties of Gaussian states [7] in order to upper-bound
Eve’s information. An important question at that stage is how to avoid
the extra hypothesis that the channel should be linear. A possible solution
consists in introducing decoy states in order to embed the non-Gaussian
modulation into an overall Gaussian modulation [8].
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There exist instances of computations involving mixed quantum states where
the quantum advantages over the best known classical algorithm cannot be as-
cribed to quantum entanglement. For such a scenario, quantum discord [1–3]
has been proposed as the resource behind the quantum speedup [4]. Since then,
quantum discord has been studied in a variety of settings, and shown to be of rel-
evance in dynamics of open quantum systems and quantum phase transitions. It
has also been used to explain the performance of quantum and classical Maxwell
demons. However, there has been a lack of interpretation of quantum discord as
a resource in the information theoretic sense. This requires the identification of
an information processing task which is made easier by the presence of discord,
or more expensive the lack it. Such a task has recently been identified, in terms
of quantum state merging [5, 6]. In this work, we present a more general, and
fundamental role played by quantum discord in quantum information process-
ing.

One of our main results is a connection between quantum discord and the
strong subadditivity of von Neumann entropy. Strong subadditivity of entropy
is one of the most vital and powerful expressions in information theory [7]. It is
therefore interesting in its own right to prove that the strong subadditivity of the
Von Neumann entropy implies nonnegativity of the quantum discord. We use
this result to revisit the connection between quantum discord and quantum state
merging [5]. We provide an intuitive understanding of how quantum discord is
the markup in the cost of state merging [8] when one of the parties in subjected
to measurements.

Our second main result gives an operational interpretation of quantum dis-
cord by establishing its role in an important class of quantum information proto-
cols. To that end, we show that quantum discord measures how coherently one
performs the Mother protocol [9], and its generalization as the FQSW (Fully
quantum Slepian Wolf) protocol, in the presence of decoherence. The Mother
protocol can be viewed as an entanglement distillation between two parties, A
and B, when the only type of communication permitted is the ability to send
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qubits from A to B. It is the unification of an important class of quantum infor-
mation protocols, those that are bipartite, unidirectional and memoryless.

The Mother protocol has as its children several protocols that are well known,
such as quantum teleportation, entanglement distillation, superdense coding [10].
Our results allow us to study the behaviour of these protocols in the presence of
measurements or decoherence on one of the subsystems. Our results thus show
that quantum discord is one of the quantities that certifies the performance of
almost all quantum protocols.
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Finding the consequences of symmetries in dynamics is a subject with
broad applications in physics, from the smallest scales in high energy scat-
tering experiments, to the largest scales in astrophysical observations. In
many cases the dynamics is sufficiently complicated that one cannot find
its exact characterization and one must rely heavily on a consideration
of the symmetries. Perhaps the most prominent and powerful example of
the consequences of symmetry is the existence of conservation laws for
closed systems. We are interested to find tools to study the consequences
of symmetry which apply to open as well as closed quantum systems.

We say a time evolution described by the quantum channel E respects
the symmetry G or is G-covariant if ∀g ∈ G : E ◦U(g) = U(g)◦E where
U(g)[ρ] ≡ U(g)ρ U †(g) and {U(g) : g ∈ G} is the unitary representation
of the group on the Hilbert space. If there is a G-covariant channel under

which ρ evolves to σ we write ρ
G−cov−−−−→ σ. The central question we wish

to answer is the following: For any given ρ and σ is ρ
G−cov−−−−→ σ possi-

ble or not? The relevant properties of a state which specify whether the

transformation ρ
G−cov−−−−→ σ is possible or not can be called the asymme-

try properties of that state. More precisely, τ1 and τ2 have exactly the

same asymmetry properties or are G-equivalent if both τ1
G−cov−−−−→ τ2 and

τ2
G−cov−−−−→ τ1 exist. Then to answer the question of whether ρ

G−cov−−−−→ σ is
possible or not we only need to know the equivalence classes of ρ and σ; all
other information about ρ and σ are useless. It turns out that for the case
of pure states we can find a simple characterization of the G-equivalence
classes of states.

An asymmetry measure quantifies how much the symmetry is broken
by a given state. The defining property of an asymmetry measure is that
it be non-increasing under G-covariant time evolutions. In other words
a function γ from states to real numbers is an asymmetry measure if

ρ
G−cov−−−−→ σ implies γ(ρ) ≥ γ(σ). Therefore any asymmetry measure puts

a necessary condition on the possibility of ρ
G−cov−−−−→ σ. Note that an

asymmetry measure should have the same value for all states which are G-
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equivalent and therefore it can only depends on the G-equivalence classes
of states.

But how can we find nontrivial asymmetry measures? In the case of
rotational symmetry one might expect that the (absolute value of the
expectation value of) components of angular momentums are asymme-
try measures. However, it turns out that this is not true and angular
momentum can be amplified.

To find a recipe for finding asymmetry measures we introduce a dif-
ferent point of view for thinking about asymmetry which is not based
on symmetric dynamics; instead it is based on the intuition that a state
which breaks symmetry can be thought as a signal which carries infor-
mation about the group element. In other words, to study the asymme-
try properties of state ρ relative to the group G, we think of the set
{U(g)[ρ] : g ∈ G} as an encoding of G that is, the element g ∈ G is en-
coded in U(g)[ρ]. Now one can show that G-equivalence classes of states
can be defined in terms of the interconvertability of the encodings intro-
duced by the states.

Using this point of view to asymmetry we can use information mea-
sures to build asymmetry measures. In particular using the Holveo quan-
tity as an information measure we can easily see that for arbitrary prob-
ability distribution p(g) over the symmetry group G, the quantity

γp(ρ) ≡ S
(∫

dg p(g)U(g)[ρ]

)
− S(ρ)

is an asymmetry measure, i.e. if ρ
G−cov−−−−→ σ then γp(ρ) ≥ γp(σ)

All asymmetry measures are constants of the motion in the case of
closed system symmetric time evolutions. On the other hand, in the case
of closed systems we can also use Noether’s theorem to derive the con-
sequences of symmetry. Now the question is: does the conservation of
asymmetry measures imply constraints that are not implied by Noether’s
theorem? Interestingly, the answer is different for the case of pure and
mixed states. We show that for pure states Noether’s theorem includes
all the possible implications of the symmetry of dynamics. We show this
by proving that if 〈ψ|U(g)|ψ〉 = 〈φ|U(g)|φ〉 then there exists a G-covariant
closed system dynamics which transforms |ψ〉 to |φ〉. On the other hand,
we present a simple example which shows that in the case of mixed states
conservation of asymmetry measures imply more constraints than those
prescribed by Noether’s theorem.
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Abstract. Device-independent quantum key distribution aims to provide key distribution schemes
whose security is based on the laws of quantum physics but which does not require any assumptions
about the internal working of the quantum devices used in the protocol. This strong form of security,
unattainable with standard schemes, is possible only when using correlations that violate a Bell in-
equality. We provide a general security proof valid for a large class of device-independent quantum key
distribution protocols in a model in which the raw key elements are generated by causally independent
measurement processes. The validity of this independence condition may be justifiable in a variety of
implementations and is necessarily satisfied in a physical realization where the raw key is generated
by N separate pairs of devices. Our work shows that device-independent quantum key distribution is
possible with key rates comparable to those of standard schemes.
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Self-testing graph states
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Self-testing was introduced by Mayers and Yao in [3], with later developments in
[2], [5] and [4]. The goal of self-testing is to verify the operation of a group of non-
communicating quantum devices using only classical interaction with the devices
and without trusting any of them a priori. A self-test, then, is simply a protocol for
doing so. In this article we describe two different self-tests which verify that a group
of devices share a graph state and implement Pauli X and Z measurements on this
state.

Theorem 1. Let G be a connected graph with an odd cycle. Then there exists a
self-test for the graph state |G〉 with |V (G)|+ 1 measurement settings. Furthermore,
this test is robust.

The measurement settings for this test correspond to the standard stabilizer gener-
ators for |G〉 along with one other stabilizer defined by the odd cycle.

Theorem 2. Let G be any connected graph. Then there exists a self-test for the
graph state |G〉 with |V (G)| + 3 measurement settings. Furthermore, this test is
robust.

For this test the measurement settings are again derived from the standard stabilizer
generators for |G〉 along with three additional measurements which are similar to
those used in the Mayers-Yao test for EPR pairs [3].

These self-tests can be reinterpreted as Bell inequalities which have a unique
strategy that achieves the quantum bound. The self-tests are also interesting from
the point of view of computation since graph states, along with certain measure-
ments, are universal for quantum computation. This opens the door for a type of
interactive proof with efficient quantum provers, similar to that achieved by Broad-
bent et al. [1].
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Extended abstract

Parity is the oracle (or black-box) problem of determining the parity of
an n-bit string by querying positions in the string. Since even a single un-
queried bit can change the parity, n classical queries are required to solve
this problem with probability 1, assuming all n-bit strings are possible.

When n = 2, this is Deutsch’s problem [6], for which a single quantum
query, used properly, suffices [4]. Beals, et al., show that in general ⌈n/2⌉
quantum queries suffice by applying the solution to Deutsch’s problem to
the bits in pairs [2]. In their algorithm the quantum queries are indepen-

dent of one another—they can be asked in parallel since none depends on
the responses of the oracle to the others—and the measurements are also
independent—after each query is processed, the state is measured and
the resulting information (the parity of a pair of the bits) is combined
classically at the end of the algorithm.

This same independence of multiple queries is a feature of existing
multi-query quantum algorithms for abelian and non-abelian hidden sub-
group problems (see [10] for a survey); although while in the former case
the measurements can be independent [12], for many of the latter joint or
entangled measurements are necessary to obtain more than an exponen-
tially small amount of information [8]. Grover’s quantum search algorithm
[7], and quantum (random walk) search algorithms on graphs [11, 1] more
generally, however, utilize coherent sequences of adapted queries—the
quantum state is modified by each oracle response before it is returned to
the oracle for the next query, so the queries are not independent. These
algorithms all use amplitude amplification [3] to adapt their sequential
queries.

But amplitude amplification, which identifies an element in the preim-
age of 1 for some bit-valued function, does not apply to Parity, nor to
its generalization:

Sum. Let f : Zn → Zk, where f is accessed via an oracle that responds
with f(x) when queried about x ∈ Zn. Find

∑
x∈Zn

f(x).
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Inspired by our prior results on the uselessness of ⌊(n−1)/2⌋ quantum
queries for Sum when f is chosen uniformly at random [9], we construct
an n− r quantum query algorithm that computes the sum correctly with
probability min{⌊n/r⌋/k, 1}, for each 1 ≤ r ∈ N. This quantum algorithm
utilizes the n−r queries sequentially and adaptively, like quantum search
algorithms, but in a different way that is not amplitude amplification.

We motivate the development of our algorithm by considering the
simplest new instances of Sum—computing the sum of two or three trits—
and then construct the algorithm for the general problem. We conclude
by recalling the result of van Dam that strings of n bits can be identified
with high probability using n/2+O(

√
n) queries, and hence any function

of them can be computed with the same probability [5]. We generalize
this result to k > 2 and show that it gives success probabilities less than
those of our algorithm.
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The graph state formalism [3] is an elegant and powerful formalism
for quantum information processing. Graph states form a subfamily of
the stabiliser states [2]. They provide a graphical description of entan-
gled states and they have multiple applications in quantum information
processing, in particular in measurement-based quantum computation
(MBQC) [7], but also in quantum error correcting codes [2] and in quan-
tum protocols like secret sharing [5, 4]. They offer a combinatorial ap-
proach to the characterisation of the fundamental properties of entangled
states in quantum information processing. The invariance of the entan-
glement by local complementation of a graph [8]; the use of measure of
entanglement based on the rank-width of a graph [9]; and the combinato-
rial flow characterisation [1] of deterministic evolutions in measurement-
based quantum computation witness the import role of the graph state
formalism in quantum information processing.

We focus on the application of graph states in MBQC and in particu-
lar on the characterisation of graphs that can be used to perform quantum
information processing in this context. The existence of a graphical con-
dition which guarantees that a deterministic MBQC evolution can be
driven despite of the probabilistic behaviour of the measurements is a
central point in MBQC. It has already been proven that the existence of
a certain kind of flow called glfow characterises uniformly stepwise de-
terminism [1] and that finding a gflow can be done in polynomial time
[6]. We introduce a simpler but equivalent combinatorial characterisation
using focused gflow and we provide a simple condition of existence of such
a flow as the existence of a right inverse to the adjacency matrix of the
graph. We also prove additional properties in the case where the number
of input and output qubits of the computation are the same: the gflow
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CNRS-JST Strategic French-Japanese Cooperative Program, and Special Coordi-
nation Funds for Promoting Science and Technology in Japan. This work is also
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is then reversible and the stepwise condition [1] on determinism is not
required to guarantee the existence of a gflow.

The main contribution of this work is the weakening of the determin-
ism condition in order to consider the more general class of information
preserving evolutions. Being information preserving is one of the most
fundamental property that can be required for a MBQC computation.
Indeed, some non-deterministic evolutions can be information preserv-
ing when one knows the classical outcomes of the measurements pro-
duced by the computation. Such evolutions are called equi-probabilistic –
when each classical outcome occurs with probability 1/2 – or constant-
probabilistic in the general case. We introduce simple combinatorial con-
ditions for equi-probabilistic and constant-probabilistic MBQC by means
of excluded violating sets of vertices. We show, in the particular case
where the number of input and output qubits are the same, that graphs
guaranteeing equi-probabilism and determinism are the same. Using this
graphical characterisation, we address the fundamental question of find-
ing input and output vertices in an arbitrary graph for guaranteeing an
equi-probabilistic (or deterministic) evolution. To this end, we show that
the input and output vertices of a graph must form transversals of the
violating sets induced by the equi-probabilistic characterisation. Finally,
we investigate several properties of the most general and less understood
class of constant probabilistic evolutions.
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Span-program-based quantum algorithm
for evaluating unbalanced formulas
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The formula-evaluation problem is defined recursively. A formula’s evaluation is the evaluation
of a gate, the inputs of which are themselves independent formulas. Despite this pure recursive
structure, the problem is combinatorially difficult for classical computers. We give a quantum
algorithm to evaluate formulas over any finite boolean gate set. Provided that the general adversary
bound complexities of the input subformulas to any gate differ by at most a constant factor, the
algorithm has optimal query complexity. Importantly, after efficient preprocessing, the algorithm
is nearly time optimal. The algorithm is derived using the framework relating span programs and
quantum algorithms from [1]. It corresponds to the composition of the individual span programs for
each gate in the formula. Thus the algorithm’s structure reflects the formula’s recursive structure.

Previous work has used span programs to develop optimal quantum algorithms for evaluat-
ing formulas, provided that every gate’s input subformulas have exactly equal general adversary
bounds [2]. In order to relax this strict balance requirement, we must maintain better control in
the recursive analysis. To help do so, we define a new span program complexity measure, the “full
witness size.” This complexity measure has implications for developing time- and query-efficient
quantum algorithms based on span programs. Essentially, it allows quantum algorithms to be based
on span programs with free inputs, which can simplify implementations.

Besides relaxing the balance requirement, our approach additionally makes the hidden constants
in [2] more explicit, allowing a bound that is exponential in the maximum fan-in of a gate.

Our algorithm runs a quantum walk on a graph corresponding to a span program for the formula.
For this approach to work, a bound is needed on the operator norm of the entry-wise absolute value
of the weighted adjacency matrix of the graph. Further graph sparsity conditions are needed for
the algorithm to be time efficient. Unfortunately, optimal span programs typically correspond to
dense graphs with large norms.

An example should clarify the problem. Consider the AND-OR formula ψ(x) =
(
[(x1 ∧ x2) ∨

x3] ∧ x4

)
∨

(
x5 ∧ [x6 ∨ x7]

)
, and consider the two graphs in Figure 1. For an input x ∈ {0, 1}7,

modify the graphs by attaching dangling edges to every vertex j for which xj = 0. Observe then
that each graph has an eigenvalue-zero eigenvector supported on vertex 0—called a witness—if and
only if ψ(x) = 1. The graphs correspond to different span programs computing ψ, and the quantum
algorithm works essentially by running a quantum walk starting at vertex 0 in order to detect the
witness. The graph on the left is a significantly simplified version of a canonical span program for ψ,
and its density still makes it difficult to implement the quantum walk.

We will be guided by the second, simpler graph. We find optimal span programs for every gate
in the formula, then compose them according to the formula using direct-sum composition. In terms
of graphs, direct-sum composition attaches the output vertex of one span program’s graph to an
input vertex of the next [2]. This leads to a graph whose structure somewhat follows the structure
of the formula ϕ, as the graph in Figure 1(b) follows the structure of ψ.

Direct-sum composition keeps the maximum degree and norm of the graph under control—
each is at most twice its value for the worst single gate. However, direct-sum composition also
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Fig. 1: Graphs corresponding to two span programs both computing the same function.

leads to additional overhead. In particular, a witness in the first graph will be supported only on
numbered vertices, whereas a witness in the second graph will be supported on some of the internal
vertices as well. This means roughly that the second witness will be harder to detect, because after
normalization its overlap on vertex 0 will be smaller. Scale both witnesses so that the amplitude
on vertex 0 is one. The witness size measures the squared length of the witness only on numbered
vertices, whereas the full witness size measures the squared length on all vertices. In our analysis,
we bound the full witness size in terms of the witness size, based on a recursion using the balance
condition.
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Abstract. Device-independent cryptographic protocols are by defini-
tion more secure than their device-dependent counterparts, since they
do not rely on any assumptions regarding the internal workings of the
apparatus used to implement them. Thus far, the device-independent
approach has been successfully applied to problems such as quantum-
key distribution and randomness generation, but it is not a priori clear
whether it can be applied to protocols in the mistrustful cryptography
class, where, as opposed to the examples mentioned above, the parties
do not trust one another. In this work we show that for bit-commitment
and coin flipping a device-independent treatment is possible.

The security of quantum cryptographic protocols often relies on as-
sumptions that in practice may be hard to verify, such as, for example, the
dimension of the Hilbert space of the system. For this reason, one would
like to base security on a minimal set of assumptions, whose validity can
in principle be checked [1]. For some quantum cryptographic protocols,
such as quantum key-distribution [2, 3] and randomness generation [4, 5],
it turns out that security can be based on nonlocality without any need
to specify the internal workings of the apparatus used to implement the
protocol. Such protocols are said to be device-independent. Yet, protocols
in the mistrustful cryptography class, such as bit-commitment and obliv-
ious transfer, have yet to receive a device-independent treatment. Indeed,
it is not a priori clear that they are amenable to such a treatment, since in
contrast to the examples mentioned above, where the parties taking part
in the protocol trust each other and collaborate to estimate the degree
of violation of some suitable Bell inequality, the different parties taking
part in a mistrustful cryptographic protocol do not trust one another.
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In this work we show that for bit-commitment and coin flipping a
device-independent formulation is possible. Bit commitment is defined as
the problem where a party must commit to a bit such that after the com-
mitment stage he is unable to alter its value and the recipient is unable to
learn it until the committing party chooses to reveal it, while coin flipping
is defined as the problem of two remote parties having to agree on the
value of a random bit. Specifically, we present a device-independent bit-
commitment protocol, and then use it to construct a device-independent
coin flipping protocol. In the bit-commitment protocol, the committing
party can cheat with a probability of ≃ 0.854 and the recipient of the com-
mitment, with a probability of 0.75, as compared to the optimal ≃ 0.739
[6] in the (balanced) device-dependent case. Whereas in the coin flipping
protocol, a dishonest party can cheat with a probability of at most≃ 0.836
as compared to ≃ 0.707 [7, 8] in the device-dependent case. (Classically, if
no limitations are put on the computational power available, a dishonest
party can cheat perfectly.)

Our protocols are not mere adaptations of existing device-independent
techniques and include novel features. For one, our bit-commitment pro-
tocol is single shot and does not call for any statistical estimates to be
made on the degree of violation of some Bell inequality. More specifi-
cally, the protocol is based on the GHZ paradox [9, 10], but at no point
is any of the parties required to check its satisfaction. Indeed, Alice’s se-
curity relies on the no-signaling principle, while Bob’s is determined by
Tsirelson’s bound [11]; the GHZ paradox only serves to ensure that the
protocol works when both parties are honest.
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Quantum Key Distribution (QKD), invented by Bennett and Bras-
sard [1] and Ekert [2] can be considered the first application of quantum
information science. Accordingly, QKD has been an object of intensive
study over the past few years. On the theory side, the security of various
variants of QKD protocols against general attacks has been shown. At
the same time, experimental techniques have reached a state of develop-
ment that enables efficient key distribution over large distances. Despite
these developments, there is still a large gap between theory and practice,
in the sense that the security claims are based on assumptions that are
not (or cannot be) met by experimental implementations. For example,
the proofs often rely on theoretical models of the devices (such as pho-
ton sources and detectors) that do not take into account experimentally
unavoidable imperfections.

In this contribution, we focus on the assumption that an arbitrarily
large number M of signals can be exchanged between the legitimate par-
ties (Alice and Bob) and subsequently used for the computation of the
final key. This assumption is quite common in the literature, and security
proofs are usually only valid asymptotically as M tends to infinity. How-
ever, in practical realizations, the key is often computed from a relatively
small number of signals (M � 106). This problem has recently received
increased attention and explicit bounds on the number of signals required
to guarantee security have been derived (cf. [3–7]).

Here, we apply a novel proof technique [8] to the BB84 QKD proto-
col [1] and derive almost tight bounds on the minimum value M required
to achieve a given level of security. The technique is based on a formulation
of the uncertainty relation in terms of smooth entropies [8]. The smooth
min-entropy, Hε

min(X|E), characterizes the amount of key — secret from
a potential eavesdropper, E— that can be extracted from a binary string
of data bits Alice encoded in the computational basis, X. [9] Compared
to preexisting methods, our approach via the uncertainty relation al-
lows a rather direct evaluation of the smooth min-entropy, i.e., we have
Hε

min(X|E) ≥ n−Hε
max(Z|Ẑ), where n is the length of X and Hε

max(Z|Ẑ)
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characterizes the amount of correlation between a test string containing
bits Alice prepared in the diagonal basis and Bob’s estimate of that string.
This yields a bound on the extractable key length, `, for ε-secure and com-
posable protocols (see [10] for a complete derivation and precise security
defintions):

` ≤ n
(
1− h(Qtol + µ)

)
− 3 log(3/ε)− leakEC , (1)

where µ ≈
√

1/k · ln(1/ε) is the statistical deviation from the tolerated
channel noise, Qtol, and k is the number of test bits used for statistics.
Finally, leakEC ≈ nh(Qtol) is the information about the key leaked during
error correction. The achievable key rate, `/M , deviates from its optimal
asymptotic value, 1−2h(Qtol), only by (probably unavoidable) terms due
to finite statistics.

We demonstrate significant improvements of the finite-key rate over
existing results. Positive key rates can now be achieved with block sizes
of n = 104 − 105 that correspond to current hardware limitations. More-
over, our security analysis is valid against the most general attacks and
robust against device imperfections in the prepare-and-measure setting.
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1 Introduction

Extracting uniform randomness from a long string x of length n using a two-
universal hash function or an extractor may be very inefficient. Vadhan proposed
in [Vad04] a more efficient method using min-entropy sampling, where first a small
subset of length k � n is sampled, and the randomness is extracted from this small
subset. This works because with high probability, the sampled subset has almost
k
n · t bits of min-entropy, if the min-entropy of the original string is at least t.

König and Renner showed in [KR07] that min-entropy sampling is also possible
in the more general case where an adversary has quantum information about x.
Again, with high probability the string x′ will have almost k

n · t bits of quantum
min-entropy. However, their result has two drawbacks: for a small error term the
size of the subset k needs to be quite large, and the sampling needs to be done in
blocks.

Related to these results are lower bounds for random access codes. This is an
encoding of n classical bits into m < n qubits, such that from the encoding, a
randomly chosen subset of size k can be guessed with probability at least p. For
the general case where k ≥ 1, a lower bound was presented by Ben-Aroya, Regev,
and de Wolf in [BARdW08]. They showed that if m < n/2 ln 2, then p ≤ 2−Ω(k).

2 Contributions

Bitwise Sampling from Blockwise Sampling. In the first part of our work, we show
that the bounds given in Corollary 6.19 and Lemma 7.2 in [KR07] also apply to
the case where the sample is chosen bitwise uniformly, instead of (recursively) in
blocks. The proof is fairly simple. Intuitively, we shows that any blockwise sampling
can be seen as bitwise uniforms sampling where the adversary forgets part of the
sampling.

This result simplifies some protocols as it may eliminate an artificial extra step
where the bits have to be grouped in blocks.

A Sampling Theorem from Quantum Bit Extractors. Our second result is a new
min-entropy sampling theorem using a completely different approach than [KR07].
It uses ideas by De and Vidick in [DV10] and combines them with a result by Ben-
Aroya, Regev, and de Wolf [BARdW08]. Our proof combines the following facts.
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– Any bit-extractor is also a quantum bit-extractor (for slightly worse parame-
ters). This has been shown by König and Terhal in [KT08].

– Using the same approach as De and Vidick in [DV10], we show that the XOR
of a randomly chosen substring of a fixed size is a bit-extractor.

– Ben-Aroya, Regev, and de Wolf showed in [BARdW08] that a bound on the
guessing probability of the XOR of a randomly chosen substring implies a
bound on the guessing probability of the whole string.

The combination of the above fact gives a bound on the guessing probability of
a uniformly chosen substring of a fixed size. Since the conditional min-entropy is
nothing else than minus the logarithm of the guessing probability, we immediately
get our sampling result. It implies the following corollary.

Corollary 1. Let a cq-state ρXQ be given, where X ∈ {0, 1}n. Let T be a random
subset of [n] of size k. If for a constant c ∈ [0, 1] we have Hmin(X | Q)ρ ≥ cn, then

Hmin(XT | TQ)ρ ≥ H−1(c/2)/6 · k − 5 .

Note that this min-entropy sampling theorem has a smaller rate than the re-
sult in [KR07]. But—besides the fact that the proof is less technical—it has the
advantage that the error converges faster, which makes it preferable for smaller
sample sizes and for non-smooth min-entropy sampling.

Lower Bound for Random Access Codes. Corollary 1 directly implies a lower bound
for random access codes: if the string X ∈ {0, 1}n is chosen uniformly and the
quantum system Q has at most m ≤ (1 − ε)n qubits, then Hmin(X | Q) ≥ εn.
Corollary 2 follows.

Corollary 2. For any k-out-of-n random access code where the storage is bounded
by m ≤ (1− ε)n, the success probability is at most 2−Ω(k).

Acknowledgements: This work was funded by the U.K. EPSRC grant EP/E04297X/1
and the Canada-France NSERC-ANR project FREQUENCY.
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